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1. INTRODUCTION 

Any risk assessment always carries uncertainty with it. The current risk assessment schemes are 
largely deterministic and uncertainty issues are most often accounted for by means of worst-case 
assumptions and assessment factors which are implicitly embedded in calculation schemes and rules. 
However, combining risk and uncertainty into a single measure makes the risk assessment not 
transparent to a risk manager or decision-maker as to how conservative or realistic the risk outcomes 
actually are. There is, therefore, a need for a proper and transparent treatment of sources of variability 
and uncertainty during the risk assessment process. One way to classify uncertainty is to differentiate it 
into uncertainty due to variability and uncertainty due to limited knowledge (van Asselt, 2000; Walker et 
al., 2003). The terminology used in the risk assessment jargon to describe these uncertainties is 
variability and uncertainty. 

Data and models used in environmental exposure, ecological effects and risk assessment are also 
characterized by variability and uncertainty and this has been recognized by both in both the academic 
literature (e.g. Burmaster, 1997; Campbell et al., 2000; Cullen & Frey, 1999; Warren-Hicks & Moore, 
1995; Hart, 2001; Posthuma et al., 2002; Vose, 1996) and in a regulatory context (e.g. Jager et al., 
1997; 1998; 2000; 2001; EPA, 1997; 1999; 2001; ECOFRAM, 1999). The National Academy of 
Sciences (NRC, 1983) has recommended that the distinction between variability and uncertainty should 
be maintained rigorously at the level of individual components of a risk assessment (e.g. emissions 
characterization, exposure assessment) as well as at the level of an integrated risk assessment. A 
workshop sponsored by the US Environmental Protection Agency provided recommendations regarding 
the use of two-dimensional simulations, which were incorporated into a 1997 agency policy document 
(EPA, 1997). 

Variability represents inherent heterogeneity or diversity in a well-characterized population. 
Fundamentally a property of nature, variability is not reducible through further measurement or study. 
The most well known sources of variability in environmental risk assessment are the temporal and 
spatial variations of the environmental concentration (captured in the Exposure Concentration 
Distribution (ECD)) and the inter- and intra-species sensitivity of a toxicant (captured in respectively 
Species Sensitivity Distribution (SSD) and a dose-response relationship). Uncertainty represents 
ignorance and lack of complete information about poorly characterised phenomena or models (e.g. 
sampling or measurement error), and can partly be reduced through further research (Cullen & Frey, 
1999). A well known source of uncertainty is the sampling uncertainty. This is uncertainty due to limits 
on sample size which is evitable given that one needs an infinite number of samples to obtain a correct 
estimate of a parameter. Sampling uncertainty is sometimes calculated as a confidence interval for 
example on the HC5 estimate of a SSD. 
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Box 1: Variability versus uncertainty in risk assessment 

 

 

For uncertainty analysis, it is helpful to verify whether the parameter under consideration is characterized by 
variability, uncertainty or both. This verification is based on the definition of variability and uncertainty and the 
scope of the assessment. An overview of sources of uncertainty and variability in risk assessments of metals is 
given in the Table below.  

 

Table 1: Overview sources of uncertainty and variability 

 Variability: 

- Not reducible through further research 

- Probability distribution represents real 
variations actually occurring 

Uncertainty: 

- Reducible through further research 

- True value is somewhere in the probability 
distribution  

Exposure • Temporal variability of emission, effluent 
concentration, flow… 

• Spatial variability of soil/sediment/aquatic 
characteristics, background 
concentration,… in regional assessment 

• E-USES or BLM model structure 
uncertainty 

• Uncertainty of physico-chemical 
properties, partition coefficients, removal 
rates,… 

• Spatial variability of soil/sediment/aquatic 
characteristics, background 
concentration,… in local assessment 

Effects • Intra-species sensitivity 

• Inter- and intra-laboratory variability 

• Endpoint differences 

• Spatial (and temporal) variability of 
physico-chemical characteristics 
determining bio-availability 

• Inter-species sensitivity 

• Probability distribution uncertainty (e.g. 
threshold versus non-threshold 
distribution) 

• Diversity & representativeness 

• Sampling uncertainty 

• Lab to field extrapolation 

 

A metal effluent concentration of a local site is, for example, characterized by temporal variability and by sampling 
uncertainty (i.e. the fact that instead of an infinite number of effluent concentration measurements, only monthly 
measurements are available). The aquatic metal concentration in Wales, as another example, is mainly be 
characterized by spatial variability. The sampling uncertainty on the regional aquatic metal measurements can be 
considered negligible if the sample size is very large. The measurement error or uncertainty can also be considered 
as negligible compared to the spatial variability. Sometimes, a parameter can be considered as variable or 
uncertain depending on the scope/scale of the assessment. The concentration of suspended solids, for example, is 
on a regional level characterized by spatial variability. The same parameter cannot be characterized by spatial 
variability on a local site. However, if the concentration of suspended solids is not known at the local site, the 
spatial variability probability distribution on a regional level can serve as a surrogate uncertainty probability 
distribution on a local level. 

If a parameter is found to be variable and uncertain, several methods can be used to estimate both uncertainty and 
variability at the same time in a two-dimensional analysis: bootstrapping, Bayesian analysis, classical methods,… 
More information on these methods can be found in literature (Cullen & Frey, 1999), (Davison & Hinkley, 1997), 
(Efron & Tibshirani, 1993). 
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Uncertainty and risk should ideally be assessed separately. Figure 1 illustrates that risk and uncertainty 
are two independent concepts. A risk assessment may, for example, result in a large estimated risk but 
this estimated risk can either be very uncertain or the estimated risk may only be characterized by 
limited uncertainty. The same holds true for a small estimated risk. 

 

Risk

Uncertainty

Small risk
Small uncertainty

Small risk
Large uncertainty

Large risk
Large uncertainty

Large risk
Small uncertainty

 
Figure 1: Illustration showing that risk and uncertainty are two independent concepts 

 

Methods for characterizing risk and its uncertainty should not be conditioned by data availability. 
Probabilistic methods are often introduced as a way to better quantify uncertainty and variability in risk 
assessment. However, uncertainty can also be estimated in data poor conditions1 – as is often the case 
in current deterministic assessments. This requires some more pragmatic tools. 

In case of data poor metals and lack of prior knowledge on distribution shape of variability and 
uncertainty, the deterministic approach may be the only valid way forward. Since, in a conventional 
deterministic risk assessment, the different layers of conservatisms used in the risk assessment are 
eventually “hidden” in the risk quotient estimates, it is recommended to transparently report the different 
sources of uncertainty and where possible and useful to provide a quantitative estimate of the 
uncertainty (e.g. through a scenario analysis, see further). 

In case of deterministic risk (i.e. when risk characterization ratio becomes larger than one) or for data 
rich metals, probabilistic techniques could be used. Probabilistic techniques may require the collection 
of additional data (e.g. more than 10 toxicity tests) but usually result in more realistic and differentiated 
risk statements (including both quantitative and qualitative uncertainty estimates). Again, both the 
uncertainty and variability are not “hidden” but are explicitly communicated in the risk characterization to 
the risk manager. Probabilistic risk assessment can therefore be considered as a precautionary-driven 
approach because in this way, issues of (pre)caution due to uncertainty are explicitly transferred to the 
risk management phase (Verdonck et al., 2005). To identify the most critical parameters driving the risk, 
it is recommended to perform a sensitivity analysis as a first step in the probabilistic risk framework. 

                                                 
1 Data poor conditions are considered to contain enough data to calculate some exposure and effects point estimate. If no data on 
exposure or effects are available, no uncertainty analysis and risk characterization can be carried out.   
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2. DIFFERENTIATING UNCERTAINTY FOR DATA-POOR AND DATA-RICH METALS  

A first prerequisite is to improve the transparency of the uncertainty. For this, uncertainty can be 
classified into several classes. Several guidances have been developed in response to the notion that 
in the daily practice of science for policy, there is a pressing need for guidance in assessing and 
communicating uncertainties (van der Sluijs et al., 2003; Krayer von Kraus, 2005b). The RIVM guidance 
recognizes that this need extends beyond the quantitative assessment of uncertainties in model results 
per se, and focuses therefore on the entire process of environmental assessment, running from 
problem framing towards reporting the results of the study (van der Sluijs et al., 2003). Arguably, with 
the development and implementation of the guidance, RIVM sets a best practice standard in 
environmental management.  

The uncertainty matrix is in this regard an useful aid in making an inventory of where (‘location’) the 
most (policy) relevant uncertainties are expected, and how they can be characterized in terms of a 
number of uncertainty features (Walker et al., 2003; van der Sluijs et al., 2003; 2004; Krayer von Kraus, 
2005b). In the draft TGD for REACH (RIP, 2005), a check list is proposed to systematically check and 
list the different sources of uncertainty and variability for each step in the risk assessment procedure. 
Uncertainty matrices and check lists allow the risk assessor and manager to have a broader 
perspective on uncertainty instead of only focusing on the known or quantifiable sources. Recognized 
but unquantifiable uncertainties are in this way made more transparent.  

As exposure concentrations (PEC) and the effects thresholds (PNEC) are characterized by both 
variability and uncertainty such variables are called second-order variables and represented by 
probability distributions in two dimensions. For each percentile of the variability distribution, an 
uncertainty or confidence interval can be estimated (i.e. the uncertainty distribution). In Figure 2, a 
variability distribution is represented as a cumulative distribution function. The uncertainty distribution 
can also be represented by a cumulative or density distribution function; however, for communication 
purposes, it is often represented by a 90% uncertainty or confidence interval or band (see grey bands in 
Figure 2). The worst-case exposure estimate (i.e. the PEC) used in actual risk assessments can be 
seen as an upper percentile of both its temporal and/or spatial variability and its uncertainty. The actual 
worst-case effects or toxicity estimate (i.e. the PNEC) can be seen as a lower percentile of both its 
inter-species, and other forms of variability, and its uncertainty. 

 

When insufficient data and/or knowledge do not allow estimating these distributions, assessment 
Factors (AF) and worst-case assumptions are used to estimate the uncertainty and variability (as 
illustrated by the arrows at the bottom of Figure 2). The actual worst-case exposure estimate (i.e. the 
PEC) can then be seen as a mean exposure estimate multiplied with extrapolation factors due to worst-
case assumptions both from variability and uncertainty. The actual worst-case effects or toxicity 
estimate (i.e. the PNEC) can be seen as a mean effects or toxicity estimate divided by assessment 
factors and worst-case factors both from variability and uncertainty. This can also mathematically be 
formulated as: 

 

( ) ( )uncworstcaseuncworstcase

uncworstcaseworstcase

FactorToxAFFactorToxAF
tyMeanToxicioxicityWorstCaseT

FactorExpFactorExpreMeanExposuxposureWorstCaseE

,var,var

,var,

⋅⋅⋅
=

⋅⋅=
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Figure 2: Top: Environmental cumulative probability distributions describing variability in exposure 
(Exposure Concentration Distribution) and effects/toxicity (Species Sensitivity Distribution 
or SSD) with grey bands describing 90% uncertainty. Bottom: assessment factors/worst 
case assumptions describing variability or uncertainty in environmental risk assessment 
(AF: Assessment Factors)
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3. UNCERTAINTY ANALYSIS FOR DATA-POOR METALS  

The reflex on uncertainty to strive for certainty has led to the build-up of conservative measures (worst 
case assumptions and assessment factors) in a risk assessment context. However, application of worst 
case assumptions and assessment factors is often not transparent or scientifically appropriate and may 
lead for metals to unrealistic risk outcomes (e.g. PNECs below the background). 

An uncertainty matrix or a check list allows already the risk assessor and manager to locate the most 
important sources of uncertainties and how they can be characterized. A crude scenario-analysis can 
be subsequently conducted to estimate and gain insight in realistic order of magnitudes of uncertainty. 
For this, a distinction needs to be made between measures taken in the risk assessment process due to 
variability (inherent, irreducible environmental variations), such as taking the 5th percentile of SSD (due 
to inter-species sensitivity) or taking the 90th percentile of a local effluent concentration (due to temporal 
variability), and measures due to uncertainty such as applying assessment factor (due to lab-to-field or 
model uncertainty). It is recommended to quantify the degree of uncertainty introduced at each level of 
the risk assessment process. This can be done by conducting the risk assessment for the following two 
or three scenarios: 

1. The reasonable worst-case scenario accounts for all (realistic) worst-case assumptions and 
assessment factors caused by sources of both variability and uncertainty. This scenario mostly 
considers parameters and assumptions towards the lower end conditions (on effect side) or 
higher end conditions (on exposure side). 

2. The typical scenario accounts for the worst-case assumptions and assessment factors caused 
by sources of variability only. This scenario considers worst-case conditions only for 
parameters characterized by variability. Averages or medians are mostly taken for parameters 
characterized by uncertainty. 

3. The average scenario does not account for sources of variability and uncertainty. This 
scenario is not necessarily sufficiently protective for the environment and should therefore not 
always be considered. 

 

In Table 1 the mathematical expression of the calculation of the risk characterization ratio (RCR) is 
given for the different scenarios. 
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Table 1: Risk Characterization Ratio (RCR) formula for several scenarios in data-poor conditions 

Scenario Formula Risk Characterization Ratio (RCR) 

Reasonable worst-case 
scenario (accounts for both 
variability and uncertainty) 

uncworstcaseworstcaseunc

uncworstcaseworstcase

FactorToxFactorToxAFAF
tyMeanToxici

FactorExpFactorExpreMeanExposu
RCR

,var,var

,var,

⋅⋅⋅

⋅⋅
=

Typical scenario (accounts for 
only variability) 

var,var

var,

worstcase

worstcase

FactorToxAF
tyMeanToxici

FactorExpreMeanExposu
RCR

⋅

⋅
=  

Average scenario
tyMeanToxici
reMeanExposuRCR =  

 

The difference in Risk Characterization Ratios (RCRs) between the reasonable worst-case and typical 
scenario can thus be considered as a measure for uncertainty. The difference in RCRs between the 
typical and average scenario can be considered as a measure for variability. The average scenario is 
not necessarily sufficiently protective for the environment but can be useful to obtain a quantitative 
estimate of the variability. 

Figure 3 provides a visual representation of the level of uncertainty introduced when comparing the 
outcome of the exposure and effect assessment for both scenarios as mentioned above. The build-up 
of uncertainty can be quantified by calculating the overall uncertainty factor (ratio PECscenario 1/PECscenario 
2; ratio PNECscenario 2/PNECscenario 1) after the last step in the PEC and PNEC calculation. 
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Steps 
PEC 
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Steps 
PNEC 
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Uncertainty 
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Figure 3: Conceptual scheme of increasing level of uncertainty when going through all calculation steps 
in the exposure (left) and effects (right) assessment. The uncertainty factor can be 
interpreted as the MOS (Margin of Safety) in human health risk assessments. The top graph 
illustrates an assessment with more uncertainty compared to the lower graph illustrating an 
assessment with less uncertainty. 

 

An indicative overview of the assumptions to be considered in the different scenarios for the exposure, 
effects assessment and risk characterization is given in Table 2. In the reasonable worst-case scenario, 
minima or low end values (e.g. 10th percentiles are typically taken in the effects assessment and high 
end values (e.g. 90th percentiles) or maxima are taken in the exposure assessment. In addition, 
assessment factors are often implemented. Contrary to the typical scenario, averages or medians of 
uncertainty variations are taken in both effect/exposure assessment and no additional assessment 
factors are used in the reasonable scenario. For some parameters as the Kd-value, the minimum or 10th 
percentile is a worst case estimate for one compartment but is, at the same time, a best case scenario 
for another compartment. For these parameters, both a minimum or 10th percentile and a maximum or 
90th percentile could be used in the assessment. 
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The uncertainty analysis methodology can be conducted for both a local and regional risk assessment. 
Obviously, the steps given in Table 2 will differ for a local and regional assessment but the principles of 
calculating the level of uncertainty remain the same. Spatial variability is not relevant in a local 
assessment as site-specific conditions apply. 

 

Table 2: Indicative overview of uncertainty analysis in regional/local deterministic risk assessment  

Uncertainty analysis in data-poor metal risk 
assessment 

uncertainty                   variability 
Step 

Source of 
uncertainty or 

variability 
Reasonable 
worst-case 
scenario 

Typical  

scenario 
Average 

scenario 

1. Data 
selection 

Intra-species 
sensitivity 

NOEC ECx ECx

Inter- and intra-
laboratory 
variability 

Geometric mean* Geometric mean Geometric mean 2. Data 
aggregation 

Endpoint 
differences 

Lowest is taken Lowest is taken Median is taken 

3. Bio-
availability 
normalization  

Spatial (and 
temporal) 
variability of 
physico-chemical 
characteristics 

to low end value 
(e.g. 10P) 
conditions 

to average 
conditions 

and lowest BLM 
model 

 

to average 
conditions 

and average BLM 
model 

4. Selection 
distribution** 

Model/ 

distribution 
uncertainty 

Lognormal/loglogi
stic is standard*** 

Take best fitting 
distribution 

Take best fitting 
distribution 

5. Derivation 
protection 
level 

Inter-species 
sensitivity 

HC5 ** 

Assessment 
factor between 
10-1,000 

HC5 ** 

Assessment 
factor between 
10-1,000 

HC5 ** 

Assessment 
factor between 
10-1,000 

Overall quality data Assessment 
factor between 1-
5 

Diversity & 
representativeness 

Assessment 
factor between 1-
5 

Ef
fe

ct
s 

as
se

ss
m

en
t 

6. Derivation 
PNEC 

Sampling 
uncertainty 

Assessment 
factor between 1-
5 

No assessment 
factor 

No assessment 
factor 
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Uncertainty analysis in data-poor metal risk 
assessment 

uncertainty                   variability Source of 
Step uncertainty or 

variability 
Reasonable Typical  Average 
worst-case scenario scenario scenario 

  Lab to field 
extrapolation 

Assessment 
factor between 1-
5 

  

Parameter 
collection 

Temporal 
variability of 
emission (both 
local and regional 
level) 

Average is taken* Average is taken Average is taken 

 Temporal 
variability of 
effluent 
concentration 
(typically for local 
assessment) 

High end value 
(e.g. 90P) is 
taken 

High end value 
(e.g. 90 P) after 
elimination of 
outliers 

Average is taken 

 … physico-
chemical 
properties, partition 
coefficients, 
removal rates 

Averages or 
percentiles are 
taken 

Average/ median 
is taken 

Average/ median 
is taken Ex

po
su

re
 m

od
el

lin
g 

 Other parameters Reasonable 
worst case 

Average is taken Average is taken 

1. Data 
aggregation 

Temporal 
variability 

High end value 
(e.g. 90th P) is 
taken for each 
site 

High end value 
(e.g. 90th P) is 
taken for each 
site 

Median is taken 
for each site 

Spatial variability Mean is taken* Mean is taken Mean is taken 2. Derivation 
PEC 

 

3. Derivation 
PECadd if 
needed 

Sampling 
uncertainty (usually 
small for large data 
sets) 

Not considered Not considered Not considered 

Ex
po

su
re

 m
on

ito
rin

g 

 Spatial variability of 
background 
concentration 

Subtract 
minimum 

Subtract site 
specific value or 
in absence,  
average 

Subtract average 

ch
ar

ac
te

riz
at

i  

 

 

 

Reasonable 
worst-case risk 
quotient 

Typical risk 
quotient 

Average risk 
quotient 
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Uncertainty analysis in data-poor metal risk 
assessment 

uncertainty                   variability Source of 
Step uncertainty or 

variability 
Reasonable Typical  Average 
worst-case scenario scenario scenario 

 

  Level of uncertainty: difference between reasonable 
worst-case and typical risk quotient 

 

* This is not the most realistic conservative option 

** In case sufficient data are available (criteria, see TGD) 

*** This may not always be the most realistic conservative option 

 

As a reality check, the total amount of uncertainty included, being the difference between the worst 
case and the typical scenario, could be evaluated/ compared with e.g. the following criteria/aspects. 
This can be done using a weight of evidence approach to determine the total amount of acceptable 
uncertainty that could be applied in the final risk characterization phase. 

Issues which should be included in this weight of evidence assessment are: 

- the overall quality and relevance of the data bases; 

- the amount and representativity of the data used; 

- the used  assessment factors; 

- the margin between the toxicity level and the natural background/essentiality levels; 

 

It is recommended that all sources of uncertainty are transparently presented in the risk assessment 
report. 
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4. UNCERTAINTY ANALYSIS FOR DATA-RICH METALS 

In case a deterministic risk has been observed (i.e. when risk characterization ratio becomes larger 
than one) or in case the metal of concern is a data-rich metal, probabilistic techniques are 
recommended as a higher tier. Probabilistic techniques may require the collection of additional data and 
hence result in additional effort.. The outcome of the risk characterization is often mostly influenced by 
specific input parameters and assumptions related to both the effects (e.g. how does the selection of a 
specific SSD, threshold or non-threshold probability distribution, influence the risk characterization?) 
and exposure assessments (e.g. how does bio-availability affect the risk characterization?). To identify 
and rank the critical parameters or assumptions that drive the risk characterization and consequently 
efficiently allocate resources for further data collection, it is recommended to use sensitivity analysis as 
a first step (see Figure 4). In a next step, the variability and uncertainty of the most sensitive parameters 
are quantified. Finally, the quantified uncertainty and variability are propagated through the exposure or 
effects model. 
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Figure 4: Short overview flowchart uncertainty analysis in probabilistic risk assessment 
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4.1 Sensitivity analysis 

Sensitivity analysis, as it is applied to risk assessment, is an approach to determine which factors in a 
risk model (specific exposure pathways or making certain assumptions with respect to model 
parameters) influence risk most strongly. It provides a means of exploring, in a quantitative manner, the 
effect of a variety of “what-if” scenarios on the risk estimates. The basic approach is to allow for a 
subset of the input variables to vary within prescribed ranges and to determine how much the model 
output (usually risk) changes in response to changes in the values for each input variable. Of the 
several approaches to sensitivity analysis that are available, no single approach will serve as the best 
analysis for all modelling efforts. The best choice for a particular situation will depend on a number of 
factors, including the nature and complexity of the model and the resources available. For example, 
sensitivity ratios can be used where the ratio is equal to the percentage change in output (e.g. risk) 
divided by the percentage change in input for a specific input variable. Risk estimates are considered 
most sensitive to input variables that yield the highest ratios. Guidance on how to perform a sensitivity 
analysis could be consulted in Saltelli et al. (2000) (or in Cullen & Frey (1999)). 

 

 

Box 2: Local and global sensitivity analysis 

 

Sensitivity ratios can generally be grouped into two categories: local and global. For the local sensitivity 
analysis, an input variable is changed by a small amount, usually ±5% of the nominal (default) point 
estimate, and the corresponding change in the model output is observed. For global sensitivity analysis, 
an input variable is varied across the entire range (plausible minimum and maximum values). If local 
and global sensitivity results are different, it can be concluded that different exposure variables are 
dominating risk near the high-end (i.e. extreme tails of the risk distribution) than are dominating risk at 
the central tendency. This situation is likely to occur when there are nonlinear relationships between an 
input and output variable. 

 

Sensitivity analysis is beneficial as it helps in deciding whether and where more information is needed 
to refine the analysis and therefore provide a powerful tool to reduce the uncertainty associated with 
such assessment. In that respect sensitivity analysis could be used in both point estimates and 
probabilistic approaches. A sensitivity analysis is particularly useful when applied in a tiered approach in 
deciding which exposure pathways and assumptions are carried forward from a point estimate risk 
assessment into a one- or two-dimensional Monte Carlo analysis (definition see further). By identifying 
the variables that are most important in determining risk, one can also decide whether point estimates, 
rather than probability distributions, can be used with little consequence to the model output (thereby 
reducing the level of effort associated with developing probability distributions for all input variables). 

 

4.2 Uncertainty analysis 

Once the main uncertainty drivers are identified, the uncertainty of those parameters can be quantified 
and considered for uncertainty analysis. 

 

4.2.1. Uncertainty characterization of the input parameters 

If a parameter is found to be important to the risk outcome, additional data can be collected (if not 
already available) to characterize its variability and/or uncertainty. A number of steps need to be 
conducted in order to characterize the uncertainty of an input parameter. A number of data points or 
expert knowledge is needed to quantify its uncertainty. It can then be checked whether a parametric or 
nonparametric distribution is more appropriate, whether the parameter of concern is variable, uncertain 
or both and whether there exist correlations/dependencies between several input parameters. Graphical 
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plots as histograms and scatterplots can be used to explore the data of the parameter and help in 
selecting a parametric or nonparametric distribution. A parametric distribution could be selected based 
on best fitting criteria (such as goodness-of-fit tests) and expert knowledge. The risk assessor may, for 
example, consider threshold models for essential metals. Or, the risk assessor may consider a 
truncated distribution (min = 0; max = 14) for characterizing the parameter pH (a parameter that can 
influence bio-availability). The parametric or nonparametric distribution should then be characterized. 
Next step is to explore whether the parameter under investigation is considered to be uncertain, 
variable or both. If a parameter is found to be uncertain and variable at the same time, like for example 
the effluent concentration of a metal at a local site varies in time but can also be uncertain due to a 
limited number of samples, its variability and uncertainty could be characterized. 

More information on selecting and fitting distributions can be found in US EPA guidance: EPA (2001) 
and EPA (1999) and other literature: Cullen & Frey (1999), Vose (1996). 

 

 

Box 3: Parametric or nonparametric distributions 

 

Guidance on the use of parametric or nonparametric approaches can be found in EPA (1999), Cullen 
and Frey (1999) and Vose (1996). 

In case of doubt on selecting a parametric or nonparametric method, both methods are here 
recommended to be used in parallel because the resulting estimates can be very sensitive to the choice 
of a parametric or nonparametric method. Consequently, the importance of a proper use of distribution 
selection methods should not be underestimated. Statistical tests, graphical exploration and expert 
knowledge can help in identifying the appropriate distribution. Both parametric and nonparametric 
methods have their advantages and disadvantages and their use depends on the expert’s opinion, the 
problem formulation, the goals and the sample size. Parametric methods assume that the data come 
from a fixed form underlying distribution. This assumption enables them to work with smaller sample 
sizes. Non-parametric methods rely on the data points themselves. This makes them less vulnerable to 
deviations from certain distribution assumptions but more vulnerable to deviations in the data points. 
When the sample size is small (e.g. below 10), preference could be given to parametric methods 
whereas when the sample size is very large (e.g. above 50), preference could be given to 
nonparametric methods. For the intermediate sample sizes, either parametric or nonparametric 
techniques or both could be used. 

 

 

Box 4: Criteria to consider when selecting a parametric distribution 

 

First, graphical methods can provide valuable insights and generally could be used in conjunction with 
exploratory data analysis. They reveal important characteristics of a data set, including skewness 
(asymmetry), number of peaks (multi-modality), behaviour in the tails, and data outliers. Examples of 
graphical methods are frequency distributions (i.e. histograms), dot plots, line plots for discrete 
distributions, box-and-whisker plots and scatter plots. In a QQ-plot, observed values of a single numeric 
variable are plotted against the values that would be obtained if the sample were from a normal 
distribution. If the sample is from a normal distribution, points will cluster around a straight line. Here, 
the line is plotted through the first and third quartile of the data. The QQ-plot also depends on plotting 
positions and those are calculated according to Hazen. 

 

Second, expert judgement refers to inferential opinion of a specialist or group of specialists within an 
area of their expertise. When there is uncertainty or variability associated with an input variable, such as 
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a data gap, expert judgement may be appropriate for obtaining distributions. For example, for the 
following related parameters in a metal risk assessment, distributions could be selected such that are 
given: 

• The pH can not be smaller than 0 and larger than 14. 

• An essential metal may have a minimum threshold level in its SSD below which ecotoxicity 
effects do not occur (except deficiency effects). 

• Concentrations should always be positive numbers. 

Distributions based on expert judgement can also serve as Bayesian priors in a decision-analytic 
framework. The distributions and Bayesian priors can be modified as new empirical data become 
available. 

 

Third, goodness-of-fit tests exam how well (or poorly) a sample of data can be described by a 
hypothesized probability distribution for the population. Goodness-of-fit tests are formal statistical tests 
of the hypothesis that the data represent an independent sample from an assumed distribution. These 
tests involve a comparison between the actual data and the theoretical distribution under consideration. 
For the purpose of deriving the tail percentiles (e.g. HC5 estimate), preference is given to the outcome 
of e.g. the Andersen-Darling test because it places more emphasis on tail values. However, goodness-
of-fit tests have low statistical power and often provide acceptable fits to multiple distributions. Thus, 
goodness-of-fit tests are better used to reject poorly fitting distributions than for ranking good fits. For 
small n, goodness-of-fit tests will often fail to reject many of the hypothesized probability distributions. 

 

Once all parameters in the exposure and effects assessment are characterized as either point 
estimates or probability distributions, it should be checked whether there are correlations between these 
parameters. This is important for subsequent Monte Carlo simulation. 

 

4.2.2 Uncertainty propagation through exposure, effect or risk models 

Once the most important input parameters are identified and their uncertainty and variability is 
quantified, the uncertainty and variability of the input parameters should be propagated to the ECD, 
SSD and finally risk quotient. There are a variety of ways to propagate information about variability or 
uncertainty through a model. A good reference with an extensive overview of techniques is Cullen & 
Frey (1999). The most common technique is Monte Carlo analysis (more information in box 5). 
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Box 5: Monte Carlo analysis 

 

In Monte Carlo analysis, random samples of model input parameters are selected according to their 
respective assigned probability distributions. Once the samples from each input distribution are 
selected, the set of samples is entered into the deterministic model (e.g. E-USES, risk quotient,…). The 
model is then solved as it one would do for any deterministic analysis. The model results are stored and 
the process is repeated until the specified number of model iterations is completed. Instead of obtaining 
a discrete number for model outputs (as in a deterministic simulation) a set of output samples is 
obtained from which the output distribution can be characterized (Cullen and Frey 1999). In this way 
difficulties to estimate model input parameters and taking into account the inherent uncertainty and 
variability in specific processes are overcome. 

 

Vose's (1996) 'cardinal rule of risk analysis modelling' is "Every iteration of a risk analysis model must 
be a scenario that could physically occur". If e.g. a high river flow is selected ad random, then a low 
temperature will be more likely than a large one if the river flow is highly negatively correlated with the 
temperature. Therefore, one of the restrictions that must be placed on the model is to recognize inter-
dependencies between its uncertain components. It is possible to simulate jointly distributed random 
variables in which correlations may exist. Guidance can be found in Vose (1996). 

 

 

Box 6 : first order versus second order Monte Carlo analysis 

 

A first order or one-dimensional Monte Carlo simulation can only propagate variability or uncertainty, 
but not both at the same time without having difficulties with interpreting the output. It is therefore 
recommended that for this, among other propagation techniques, a second order or two-dimensional or 
embedded Monte Carlo simulation could be applied (Cullen & Frey, 1999). It consists simply in two 
Monte Carlo loops nested one inside the other. The inner one deals with the variability of the input 
variables, while the outer one deals with uncertainty. For each shot of a (uncertain) parameter value in 
the outer loop a whole distribution is created in the inner loop based only on variability (see Figures 
below). In this way changes in variability-dependent frequency distributions under the influence of 
parameter uncertainty can be quantified. 
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Figure 5: Simulation algorithm of a second order Monte Carlo simulation 
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Figure 6: Graphical simulation algorithm of a second order Monte Carlo simulation (X1 is uncertain and 
variable, X2 is mainly variable, X3 is mainly uncertain) 

Estimate uncertainty and variability of all inputs 

Begin outer loop to simulate uncertainty (e.g. 1,000 shots) 

For each input variable, take a random value from its uncertain parameters (if 
needed, account for correlations) 

 Begin inner loop to simulate variability (e.g. 1,000 shots) 

For each input variable, take a random value from its variability 
distribution) (if needed, account for correlations) 

  Run the deterministic model 

  Save the output 

 End inner loop 

Estimate the variability distribution based on all saved outputs of the inner loop 

End outer loop 

Estimate the uncertainty band and intervals based on all saved outputs of the outer loop 

 

The final result of an uncertainty analysis on the risk assessment of a data-rich metal is an Exposure 
Concentration Distribution (ECD) or a Species Sensitivity Distribution (SSD) with an uncertainty or 
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confidence band in respectively the exposure and effect assessment. An example is given in Figure 7. 
The uncertainty is visualized as 90% confidence bands around the ECD and SSD. Note that in this 
example, only the sampling uncertainty of measured exposure concentrations is considered and that 
this uncertainty is very small since a lot of data were available. 

The uncertainty bands transparently communicate the level of uncertainty to the risk managers. It 
quantifies how reliable the ECD and the SSD estimations are. This allows risk managers to better use 
the risk assessment results in a weight-of-evidence approach. 
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Figure 7: Example of uncertainty analysis for Zn in the Dutch surface waters (from: Van Sprang et al., 

2004) 

 

Not all sources of variability and uncertainty can be quantified. Model uncertainty and decision rule 
uncertainty for example are difficult to quantify and propagate through the assessment. These 
remaining sources of variability and uncertainty could in this case be added to the assessment on a 
(semi-)qualitative basis to the extent possible. 

 

The uncertainty can subsequently be propagated to a probabilistic risk. More information on 
probabilistic risk characterization can be found in the respective fact sheet on risk characterization 
(MERAG fact sheet 1). 
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